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Abstract. The superconductor–insulator transition in a Josephson junction chain with quantum
fluctuation is studied by a density matrix renormalization group. The critical Josephson coupling
is found to beJc ∼ 1.85, while the Villain approximation givesJc ∼ 1.1. When extending
the phase space from (0, 2π ) to (0, 4π ), corresponding to a very small quasi-particle tunnelling
effect, the superconductor–insulator transition still exists but at a larger critical couplingJc ∼ 2.3.

The problem of the superconductor–insulator (SI) transition in a Josephson junction chain
at T = 0 has been studied recently [1–6], but there are some controversies. The models
considered are (A) the Josephson coupling between superconducting islands with charging
energies (quantum fluctuation) and (B) with additional dissipation due to quasi-particle
tunnelling or ohmic dissipation.

Case (A) was studied by Bradley and Doniach [1] by a perturbation theory leading to a
Villain action, with the island phase space being considered as 2π periodic, corresponding
to the quantization of island charges in the unit of Cooper pair charge, 2e, where e is
the electronic charge. The SI transition is predicted to be atJc ∼ 2.47 (see (1) below).
Kampf and Scḧon [2] and Chakravartyet al [3] studied case (B) by the self-consistent
harmonic approximation (SCHA) or the variational method with the phase space being
either−∞ < φ < ∞ (ohmic) or 4π periodic (quasi-particle tunnelling) corresponding,
respectively, to continuous or integer multiple ofe charge states on islands. The obtained
phase diagram is characterized by two features. One is an SI transition atJc ∼ 0.55 for
both ohmic and quasi-particle tunnelling in the weak-dissipation limit, and the other is an SI
transition at a critical normal state resistance in the weak-Josephson-coupling limit. In the
ohmic case, the SI transition in the weak-Josephson-coupling limit is claimed to be universal,
the critical normal state resistance beingh/4e2 whereh is the Planck constant. Model (B)
with ohmic dissipation was also studied by Korshunov [4] by the instanton method. The
universal critical resistance in the weak-Josephson-coupling limit was reproduced, and the
SI transition predicted atJc = 8/π2 in the weak-dissipation limit, but an additional phase
transition was predicted at half the critical normal resistance forJ of order unity. This
last transition was later extended by Bobbertet al [5] using a Villain approximation to
the J � 1 region and argued to be a dipole (instanton–anti-instanton pair) to quadrupole
transition, separating two superconducting phases of different properties. The latter authors
found the SI transition in the weak-dissipation limit also atJc = 8/π2. Finally, Panyukov
and Zaikin [6] studied model (B) by mapping it on a Ginzburg–Landau action using the
Doniach procedure [7]. Among other things, they argued that there is no SI transition in the
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weak-dissipation limit in contradiction to the previous results. The universal SI transition
in the weak-Josephson-coupling limit was also replaced by a resistive to resistive transition.
Thus the problem is still open theoretically.

In this letter, we focus on one of the controversial points, namely the possible SI
transition in the weak-dissipation limit. We thus consider the Hamiltonian

H = −
∑
i

∂2

∂φ2
i

+ J
∑
〈ij〉

(
1− cos

(
φi − φj

))
(1)

where the first term is the charging energy (the self-capacitance model) and the second term
describes the nearest-neighbour Josephson coupling. Using a density matrix renormalization
group (DMRG) [8], we obtain the following results. (1) With the (0, 2π ) phase space, there
exists an SI transition atJc ∼ 1.85. The Villain approximation also gives the SI transition
but at a reduced valueJc ∼ 1.1. (2) With the (0, 4π ) phase space, the SI transition continues
to exist but at a larger couplingJc ∼ 2.3. The Villain approximation is a fairly routinely
used procedure in statistical mechanics and condensed matter physics [9]. Our result (1)
shows that this approximation is not quite accurate. Our result (2) agrees with those of the
SCHA and variational method. The SCHA and the variational method, however, grossly
underestimate the quantum fluctuation under the influence of small quasi-particle tunnelling.
While we claim that these critical coupling constants are exact within±0.05, a quantum
Monte Carlo calculation may be desirable to confirm the claim.

According to the phenomenological renormalization group theory [10], the Berezinskii–
Kosterlitz–Thouless (BKT) transition [11] describing the SI transition under consideration
can be determined by calculating the product of the system size,L, and the gap energy=
the inverse correlation length, gap(L), as a function of the system size and the Josephson
couplingJ . To obtain gap(L), we calculate the ground state and the first excited states of
the Hamiltonian (1) by the standard DMRG procedure [8]. We use the infinite algorithm,
open-boundary condition, and the ground state target.

For the (0, 2π ) phase space, the basis states at each island are chosen to be the
eigenstates,

exp(inφ) n = 0, ±1, ±2, . . . (2)

of the charge operator

−i
∂

∂φ
(3)

wheren represents the number of excess Cooper pairs. We truncaten to ben = 0, ±1, ±2,
so the degree of local freedom ism = 5. The inclusion of the higher charge states gives
a negligibly small correction to the result below. Our superblock size isM = 40. We
checked theM = 50 case with negligible corrections to our result below. So for each
system size, we have the four-block structure 40–5–5–40. We have also found that the
three-block structure 40–5–40 works equally well. Figure 1 showsL gap(L) againstJ . The
data collapsing atJc ∼ 1.85 indicates the BKT transition.

We have also calculated the same quantity for the Villain approximation which replaces
the cosine potential by [9]

eJ cosφ ∼ I0(J )
√

2πJ
∞∑

p=−∞
e−

J
2 (φ−2πp)2 ≡ eJV (φ,J ) (4)

whereI0(J ) is the zeroth-order modified Bessel function. Note that the Villain potential
V (φ, J ) depends onJ , and the approximation improves for a largerJ . Figure 2 shows
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Figure 1. L gap(L) againstJ for the (0, 2π ) phase space. The lines are from the bottom to top
for the system sizesL = 13, 19, 25, 31, 37, 43 and 49.

Figure 2. The same as in figure 1 but for the Villain approximation.

L gap(L) againstJ for the Villain approximation. The data collapsing atJc ∼ 1.1 indicates
the BKT transition. Note the underestimation by a factor of about two of the critical
Josephson couplingJc in the Villain approximation. When considering a delicate issue
such as the universal critical resistance in superconducting granular films or two-dimensional
Josephson junction arrays [12], the Villain approximation must be used with caution.

Turning to the (0, 4π ) phase space case, the basis states at each island are chosen to be
the eigenstates

exp(inφ) n = 0± 1
2, ± 2

2, ± 3
2, . . . (5)

i.e. the island charge is now allowed in integer multiples of the electronic charge due to
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Figure 3. The same as in figure 1 but for the (0, 4π ) phase space.

the tunnelling of quasi-particles. Here we are interested in the limit of small quasi-particle
tunnelling, thereby neglecting the action which describes the quasi-particle tunnelling (see,
e.g., (8) in [4]), and only taking into account the phase space enlargement effect. We took
the first 15 eigenstates, thus the elementary block size ism = 15. m = 17 was tested in
some cases, giving a negligible correction. The superblock size is againM = 40, with
M = 50 being tested to give negligible correction. It is noted thatm cannot be as small as
in the (0, 2π ) phase space case. Accordingly we have to choose the three-block structure
instead of the four-block structure from a computational restriction. From the general idea
of DMRG, one might expect a rather poor performance for the three-block algorithm. As
mentioned above, however, we have found that the three-block structure works equally
well. We have further tested the accuracy of the three-block algorithm in a similar system
of coupled harmonic oscillators which is soluble by hand [13]. Figure 3 showsL gap(L)
againstJ indicating the SI transition atJc ∼ 2.3. This result agrees with those of the
SCHA and the variational method [2, 3]. These methods, however, grossly underestimate
the quantum fluctuation under the influence of small quasi-particle tunnelling.

Finally a comment is due on the ohmic dissipation case. Experimentally, there is
always a small current leakage and thus dissipation. Nevertheless the SI transition was
clearly observed in a single Josephson junction and the same appears to be the case for a
chain [14]. Computationally, the case requires one order more expensive calculations than
the (0, 2π ) and (0, 4π ) cases, roughly the same amount of effort as to evaluate precisely
the path integral expression of the original partition function for finite ohmic dissipations.
Theoretically, however, the phase space issue, i.e., whether it is 2π periodic, 4π periodic
or not periodic at all, corresponding respectively to the 2e discrete, thee discrete and
continuous charges on each island, is not quite clear [15]. In fact, it is rather conceptually
difficult to imagine continuous charge states in light of the fact that any electronic processes
taking place in a combined system of a Josephson junction array and its environment strictly
conserves the quantization of electronic charges. The phase space issue must be resolved in
order for us to make further progress in the understanding of the Josephson junction arrays.
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